
Unit 3 Inheritance

Inheritance

Inheritance is one of the most useful and essential characteristics of object-oriented

programming. The existing classes are the main components of inheritance. The new classes are

created from existing ones. The properties of the existing classes are simply extended to the new

classes. The new classes created by using such a method are known as derived classes, and the

existing classes are known as base classes, as shown in the figure. The programmer can define

new member variables and functions in the derived class. The base class remains unchanged. The

object of the derived class can access members of the base as well as derived classes. On the

other hand, the object of the base class cannot access members of the derived classes. The base

class does not know about their subclasses.

The base class is also called super class, parent, or ancestor, and the derived class is

called subclass, child, or descendent. It is also possible to derive a class from a previously

derived class. A class can be derived from more than one class.

Reusability: Reusability means the reuse of properties of the base class in the derived classes.

Reusability is achieved using inheritance. Inheritance and reusability are not different from each

other. The outcome of inheritance is reusability.

Inheritance Definition: The procedure of creating a new class from one or more existing

classes is termed inheritance.

 1

Unit 3 Inheritance

Syntax: A new class can be defined as per the syntax given below. The derived class is indicated

by associating with the base class. A new class also has its own set of member variables and

functions. The syntax given below creates the derived class.

class name_of_the_derived_class: access specifiers name_of_the_base_class

{

// member variables of new class (derived class)

}

The names of the derived and base classes are separated by a colon (:). The access specifiers may

be private, public or protected. The keyword private or public is specified followed by a colon In

the absence of an access specifier, the default is private. The access specifiers decide whether the

characteristics of the base class are derived privately or publicly. The derived class also has its

own set of member variables and functions. The following are the possible syntaxes of

declaration:

Ex 1:

class B: public A

{

// Members of class B

};

In the above syntax, class A is a base class, and class B is a derived class.

Here, the class B is derived publicly.

Ex 2:

class B: private A // private derivation

{

// members of class B

};

Ex 3:

class B: A // by default private derivation

{

// members of class B

};

Ex 4:

class B: protected A // same as private

{

// members of class B

};

Unit 3 Inheritance

It is important to note the following points:

o When a public access specifier is used (Ex. 1), the public members of the base

class are public members of the derived class. Similarly, the protected members of

the base class are protected members of the derived class.

o When a private access specifier is used, the public and protected members of the

base class are the private members of the derived class.

Public Inheritance: When a class is derived publicly, all the public members of the base class

can be accessed directly in the derived class.

// PUBLIC DERIVATION //

class A // BASE CLASS
{

public:

int x;

};

class B: public A // DERIVED CLASS

{

public:

int y;

};

int main()

{

B b; // DECLARATION OF OBJECT

b.x=20;

b.y=30;

cout<<“\n member of A:”<<b.x;

cout<<“\n Member of

B:”<<b.y; return 0;

}

Output:

Member of A : 20

Member of B : 30

However, in private derivation, an object of the derived class has no permission to

directly access even public members of the base class. In such a case, the public members of the

base class can be accessed using public member functions of the derived class.

In case the base class has private member variables and a class derived publicly, the

derived class can access the member variables of the base class using only member functions of

the base class. The public derivation does not allow the derived class to access the private

member variable of the class directly as is possible for public member variables. The following

example illustrates public inheritance where base class members are declared public and private.

/* Write a program to derive a class publicly from base class. Declare the base class

member under private section.*/

// PUBLIC DERIVATION //

class A // BASE CLASS
{

private:

int x;

public:

A() {x=20;}

void showx()

{

cout<<“\n x=”<<x;

}

};

class B : public A // DERIVED CLASS

{

public:

int y;

B() {y=30;}

void showy()

{

showx();

cout<<“\n y=”<<y;

}

};

int main()

{

B b; // DECLARATION OF OBJECT

b.showy();

return 0;

}

Private Inheritance: The objects of the privately derived class cannot access the public

members of the base class directly. Hence, the member functions are used to access the

members.

/* Write a program to derive a class privately. Declare the member of base class under

public section.

class A // BASE CLASS

{

public:

int x;

};

Unit 3 Inheritance

class B : private A // DERIVED CLASS

{

public:
int y;

B()
{

x=20;

y=40;

}

void show()

{

cout<<“\n x=”<<x;

cout<<“\n y=”<<y;

}

};

int main()

{

B b; // DECLARATION OF OBJECT

b.show();

return 0;

}

/*Write a program to derive a class privately.*/

class A // BASE CLASS

{
int x;

public:
A()

{

x=20;

}

void showx()

{

cout<<“\n x=”<<x;

}

};

class B : private A // DERIVED CLASS

{
public:

int y;

B()
{

y=40;

}

Unit 3 Inheritance

void showy()

{

showx();

cout<<“\n y=”<<y;

}

};

int main()

{

B b; // DECLARATION OF OBJECT

b.showy();

return 0;

}

Access Specifiers and their Scope:

1. All private members of the class are accessible to public members of the same class.

They cannot be inherited.
2. The derived class can access the private members of the base class using the member

function of the base class.
3. All the protected members of the class are available to its derived classes and can be

accessed without the use of the member function of the base class. In other words, we can

say that all protected members act as public for the derived class.

4. If any class is prepared for deriving classes, it is advisable to declare all members of the

base class as protected, so that derived classes can access the members directly.
5. All the public members of the class are accessible to its derived class. There is no

restriction for accessing elements.
6. The access specifier required while deriving class is either private or public. If not

specified, private is default for classes and public is default for structures.
7. Constructors and destructors are declared in the public section of the class. If declared in

the private section, the object declared will not be initialized and the compiler will flag an

error.

Unit 3 Inheritance

Types of Inheritance

Inheritance is classified as follows:

• Single Inheritance

• Multiple Inheritance

• Hierarchical Inheritance

• Multilevel Inheritance

• Hybrid Inheritance

• Multi-path Inheritance

Single Inheritance: This occurs when only one base class is used for the derivation of a derived

class. Further, derived class is not used as a base class, such a type of inheritance that has one

base and derived class is known as single inheritance.

Example:

#include <iostream>

using namespace std;

class Publisher

{

string pname;

string place;

public:

void getdata()

{

cout<<"Enter name and place of publisher:"<<endl;

cin>>pname>>place;

}

void show()

{

cout<<"Publisher Name:"<<pname<<endl;

cout<<"Place:"<<place<<endl;

}

};

class Book:public Publisher

{

string title;

float price;

Unit 3 Inheritance

int pages;

public:

void getdata()

{

Publisher::getdata();

cout<<"Enter Book Title, Price and No. of pages"<<endl;

cin>>title>>price>>pages;

}

void show()

{

Publisher:: show ();

cout<<"Title:"<<title<<endl;

cout<<"Price:"<<price<<endl;

cout<<"No. of Pages:"<<pages<<endl;

}

};

int main() {

Book b;

b.getdata();

b.show();

return 0;
}

Multiple Inheritance: When two or more base classes are used for the derivation of a class, it is

called multiple inheritance.

Example:

class Publisher

{

string pname;

string place;

public:

void getdata()

{

cout<<"Enter name and place of publisher:"<<endl;

cin>>pname>>place;

}

void show ()

Unit 3 Inheritance

{

cout<<"Publisher Name:"<<pname<<endl;

cout<<"Place:"<<place<<endl;

}

};

class Author

{

string aname;

public:

void getdata()

{

cout<<"Enter Author

name:"<<endl; cin>>aname;

}

void show ()

{

cout<<"Author Name:"<<aname<<endl;

}

};

class Book:public Publisher, public Author

{

string title;

float price;

int pages;

public:

void getdata()

{

Publisher::getdata();

Author::getdata();

cout<<"Enter Book Title, Price and No. of pages"<<endl;

cin>>title>>price>>pages;

}

void show()

{
Publisher:: show ();

Author:: show ();

cout<<"Title:"<<title<<endl;
cout<<"Price:"<<price<<endl;

cout<<"No. of Pages:"<<pages<<endl;

}

};

int main() {

Book b;

b.getdata();

Unit 3 Inheritance

b.show();

return 0;
}

Hierarchical Inheritance: When a single base class is used for the derivation of two or more

classes, it is known as hierarchical inheritance.

Example:

#include <iostream>

using namespace std;

class Account

{

int act_no; string

cust_name;

public:

void getdata()

{

cout<<"Enter Accout number and Customer name:"<<endl;

cin>>act_no>>cust_name;

}

void show ()

{
cout<<"Account Number:"<<act_no<<endl;

cout<<"Customer Name:"<<cust_name<<endl;
}

};

class SB_Act: public Account

{

float roi;

public:

void getdata()

{

Account::getdata();

cout<<"Enter Rate of Interest"<<endl;

cin>>roi;

}

Y

X

Z

Unit 3 Inheritance

void show ()

{

cout<<"***** SAVINGS ACCOUNT********"<<endl;

Account:: show ();

cout<<"Rate of Interest:"<<roi<<endl;

}

};

class Current_Act: public Account

{

float roi;

public:

void getdata()

{

Account::getdata();

cout<<"Enter Rate of Interest"<<endl;

cin>>roi;

}

void show ()

{

cout<<"***** CURRENT ACCOUNT********"<<endl;

Account:: show ();

cout<<"Rate of Interest:"<<roi<<endl;

}

};

int main() {

/* Saving Account*/

SB_Act s;

s.getdata();

s. show ();
/* Current Account*/

Current_Act c;

c.getdata();
c. show ();

return 0;

}

Unit 3 Inheritance

Multilevel Inheritance: When a class is derived from another derived class, that is, the derived

class acts as a base class, such a type of inheritance is known as multilevel inheritance.

Example:

#include <iostream>

using namespace std;

class Publisher

{

string pname;

string place;

public:

void getdata()

{

cout<<"Enter name and place of publisher:"<<endl;

cin>>pname>>place;

}

void show ()

{

cout<<"Publisher Name:"<<pname<<endl;

cout<<"Place:"<<place<<endl;

}

};

class Author:public Publisher

{

string aname;

public:

void getdata()

{

Publisher::getdata();

cout<<"Enter Author

name:"<<endl; cin>>aname;

}

void show ()

{

Publisher:: show ();

cout<<"Author Name:"<<aname<<endl;

}

Unit 3 Inheritance

};

class Book:public Author

{

string title;

float price;

int pages;

public:

void getdata()

{

Author::getdata();

cout<<"Enter Book Title, Price and No. of pages"<<endl;

cin>>title>>price>>pages;

}

void show()

{

Author:: show ();

cout<<"Title:"<<title<<endl;

cout<<"Price:"<<price<<endl;

cout<<"No. of Pages:"<<pages<<endl;

}

};

int main() {

Book b;

b.getdata();

b.show();

return 0;
}

Hybrid Inheritance: A combination of one or more types of inheritance is known as hybrid

inheritance.

Unit 3 Inheritance

Example:

#include <iostream>

using namespace std;

class Publisher

{

string pname;

string place;

public:

void getdata()

{

cout<<"Enter name and place of publisher:"<<endl;

cin>>pname>>place;

}

void show ()

{

cout<<"Publisher Name:"<<pname<<endl;

cout<<"Place:"<<place<<endl;

}

};

class Author:public Publisher

{

string aname;

public:

void getdata()

{

Publisher::getdata();

cout<<"Enter Author

name:"<<endl; cin>>aname;

}

void show ()

{

Publisher:: show ();

cout<<"Author Name:"<<aname<<endl;

}

};

class Distributor

{

string dname;

public:

void getdata()

{

cout<<"Enter Distributor name:"<<endl;

Unit 3 Inheritance

cin>>dname;

}

void show ()

{

cout<<"Distributor Name:"<<dname<<endl;

}

};

class Book:public Author, public Distributor

{

string title;

float price;

int pages;

public:

void getdata()

{

Author::getdata();

Distributor::getdata();

cout<<"Enter Book Title, Price and No. of pages"<<endl;

cin>>title>>price>>pages;

}

void show()

{
Author:: show (); Distributor::

show ();

cout<<"Title:"<<title<<endl;

cout<<"Price:"<<price<<endl;
cout<<"No. of Pages:"<<pages<<endl;

}

};

int main() {

Book b;

b.getdata();

b.show();

return 0;
}

Multipath Inheritance: When a class is derived from two or more classes, those are derived

from the same base class. Such a type of inheritance is known as multipath inheritance. The

multipath inheritance also consists of many types of inheritance, such as multiple, multilevel, and

hierarchical, as shown in the figure.

But the disadvantage is ambiguity in classes. Consider the following example:

class A1

{

protected: int

a1;

};

class A2 : public A1

{

protected: int

a2;

};

class A3: public A1

{

protected: int

a3;

};

class A4: public A2,A3

{

int a4;

};

In the above example, classes A2 and A3 are derived from class A1; that is, their base

class is similar to class A1 (hierarchical inheritance). Both classes A2 and A3 can access the

variable a1 of class A1. The class A4 is derived from classes A2 and A3 by multiple inheritance.

If we try to access the variable a1 of class A1, the compiler shows error

In the above example, we can observe all types of inheritance, that is, multiple,

multilevel, and hierarchical. The derived class A4 has two sets of data members of class A1

through the middle base classes A2 and A3. The class A1 is inherited twice.

 Inheritance

Virtual Base Classes: To overcome the ambiguity occurring due to multipath inheritance, the

C++ provides the keyword virtual. The keyword virtual declares the specified classes

virtual. The example given below illustrates the virtual classes:

class Publisher

{

string pname;

string place;

public:

void getdata()

{

cout<<"Enter name and place of publisher:"<<endl;

cin>>pname>>place;

}

void show ()

{

cout<<"Publisher Name:"<<pname<<endl;

cout<<"Place:"<<place<<endl;

}

};

class Author:virtual public Publisher

{

string aname;

public:

void getdata()

{

cout<<"Enter Author

name:"<<endl; cin>>aname;

}

void show ()

{

cout<<"Author Name:"<<aname<<endl;

}

};

class Distributor:virtual public Publisher

{

string dname;

public:

void getdata()

{

cout<<"Enter Distributor name:"<<endl;

cin>>dname;

}

 Inheritance

void show ()

{

cout<<"Distributor Name:"<<dname<<endl;

}

};

class Book:public Author, public Distributor

{

string title;

float price;

int pages;

public:

void getdata()

{

Publisher::getdata();

Author::getdata();

Distributor::getdata();

cout<<"Enter Book Title, Price and No. of pages"<<endl;

cin>>title>>price>>pages;

}

void show()

{
Publisher:: show (); Author::

show (); Distributor:: show ();

cout<<"Title:"<<title<<endl;

cout<<"Price:"<<price<<endl;

cout<<"No. of Pages:"<<pages<<endl;

}

};

int main() {

Book b;

b.getdata();

b.show();

return 0;
}

 Pointers

A pointer is a memory variable that stores a memory address. Pointers can have any name,

and it is declared in the same fashion as other variables, but it is always denoted by ‘*’ operator.

Features of Pointers

2. Pointers save memory space.

3. Execution time with pointers is faster, because data are manipulated with the address, that

is, direct access to memory location.

4. Memory is accessed efficiently with the pointers. The pointer assigns as well as releases

the memory space. Memory is dynamically allocated.

5. Pointers are used with data structures. They are useful for representing two-dimensional

and multi-dimensional arrays.

6. We can access the elements of any type of array, irrespective of its subscript range.

7. Pointers are used for file handling.

8. Pointers are used to allocate memory in a dynamic manner.

9. In C++, a pointer declared to a base class could access the object of a derived class.

However, a pointer to a derived class cannot access the object of a base class.

Pointer Declaration

Pointer variables can be declared as follows:

Example:

int *x;

float *f;

char *y;

In the first statement, ‘x’ is an integer pointer, and it informs the compiler that it holds the

address of any integer variable. In the same way, ‘f’ is a float pointer that stores the address of any

float variable, and ‘y’ is a character pointer which stores the address of any character variable.

Unit 3 Pointers and Polymorphism

The indirection operator (*) is also called the dereference operator. When a pointer is

dereferenced, the value at that address stored by the pointer is retrieved.

/* Write a program to display the address of the variable.*/

#include <iostream>

using namespace std;

int main()
{

int n;

cout<<"Enter a Number = ";

cin>>n;
cout<<"Value of n = "<<n;

cout<<"Address of n= " <<(unsigned)&n;

return 0;
}

Output:

Enter a Number = 10
Value of n = 10
Address of n=4068

/* Write a program to declare a pointer. Display the value and address of the variable-

using pointer. */

#include <iostream>

using namespace std;

int main()
{

int *p;

int x=10;

p=&x;

cout<<"\n x="<<x <<" &x="<<&x;

cout<<"\n x="<<*p<<" &x="<<p;

return 0;
}

Unit 3 Pointers and Polymorphism

Output:
x=10 &x=0x22ff18

x=10 &x=0x22ff18

Arithmetic Operations with Pointers

We can perform different arithmetic operations by using pointers. Increment, decrement,

prefix, and postfix operations can be performed with pointers. The effects of these operations are

shown in Table.

From the above table, while referring to the first entry, we can observe that on increment of the

pointer variable for integers, the address is incremented by two; that is, 4046 is the original

address and on increment, its value will be 4048, because integers require two bytes. Similarly,

when the pointer variable for integer is decreased, its address 4048 becomes 4046.

/* Program on pointer incrementation and decrementation.*/

int main()
{

int x=10;

int *p;

p=&x;
cout<<“\n Address of p:”<<unsigned(p);

p=p+4;
cout<<“\n Address of p:”<<unsigned(p);

p=p-2;
cout<<“\n Address of p:”<<unsigned(p);

return 0;
}
Output:

Address of p:65524
Address of p:65532
Address of p:65528

Unit 3 Pointers and Polymorphism

/* Program on changing the values of variables using pointer.*/

#include <iostream>

using namespace std;

int main() {
int x=10;

int *p;

p=&x;
cout<<"\n Value of x:"<<*p;

*p=*p+10;
cout<<"\n Value of x:"<<*p;

*p=*p-2;
cout<<"\n Value of x:"<<*p;

return 0;
}

Output:
Value of x: 10

Value of x: 20
Value of x: 18

Pointer to Pointer

Pointer to pointer is a pointer that stores the address of another pointer. There can be a

chain of pointers depending on applications/requirements. In the Figure,, x is a simple variable, p

is a pointer to the variable x, and q is a pointer to p. The values of variables ‘x,* p, and **q’ are

shown in the boxes, and their addresses are shown outside the boxes.

/*Program to demonstrate the concept of pointer to pointer.*/

#include <iostream>

using namespace std;

int main() {
int x=10;

int *p;

int **q;

Unit 3 Pointers and Polymorphism

int ***z;
p=&x;
q=&p;
z=&q;
cout<<"\n Value of x = "<<x;

cout<<"\n Value of x = "<<*p;

cout<<"\n Value of x = "<<**q;

cout<<"\n Value of x = "<<***z;
cout<<"\n Adderss of x "<<unsigned(&x);

cout<<"\n Adderss of p "<<unsigned(&p);

cout<<"\n Adderss of q "<<unsigned(&q);

return 0;

}

OUTPUT

Value of x = 10
Value of x = 10
Value of x = 10
Value of x = 10

Adderss of x 2293528
Adderss of p 2293524
Adderss of q 2293520

void Pointers

When a variable is declared as being a pointer to type void it is known as a generic

pointer. Since you cannot have a variable of type void, the pointer will not point to any data and

therefore cannot be dereferenced. It is still a pointer though, to use it you just have to cast it to

another kind of pointer first. Hence the term Generic pointer. This is very useful when you want

a pointer to point to data of different types at different times.

/* Program to illustrate the use of void pointer */

int main()
{

int i;

char c;
void *the_data;

Unit 3 Pointers and Polymorphism

i = 6;

c = 'a';

the_data = &i;
cout<<"The data points to the integer value :"<< *(int*) the_data;

the_data = &c;
cout<<"\nThe data now points to the character:"<< *(char*) the_data;

return 0;
}

Output:
The data points to the integer value : 6
The data now points to the character: a

wild Pointers or Dangling Pointers

Uninitialized pointers are known as wild pointers because they point to some arbitrary

memory location and may cause a program to crash or behave badly.

#include <iostream>

using namespace std;

int main()
{

int *p; /* wild pointer */
p = 12; / Some unknown memory location is being corrupted. This

should never be done. */
cout<<unsigned(p);

}

Please note that if a pointer p points to a known variable then it’s not a wild pointer. In

the below program, p is a wild pointer till this points to a.

int main()
{

int *p; /* wild pointer */

int a = 10;
p = &a; /* p is not a wild pointer now*/
p = 12; / This is fine. Value of a is changed */

}

Unit 3 Pointers and Polymorphism

The pointer becomes a wild pointer due to the following reasons:

 Pointer declared but not initialized
 Pointer alteration
 Accessing destroyed data

this Pointer

When a member function is called, it is automatically passed an implicit argument that is

a pointer to the invoking object (i.e., the object on which the function is invoked). This pointer is

known as this pointer. It is internally created at the time of function call.

/* Program to print the address of the object using this pointer*/

#include <iostream>

using namespace std;

class integer
{

int x;
public:

void show_addr();
};
void integer::show_addr()
{

cout<<"My Object's Address="<<this<<"\n";
}
int main() {

integer a,b,c;
cout<<"A addr: "<<&a<<endl;

cout<<"B addr: "<<&b<<endl;

cout<<"C addr: "<<&c<<endl;

a.show_addr();
b.show_addr();

c.show_addr();

return 0;

}

Output:
1. addr:0x22ff1c
2. addr: 0x22ff18

3. addr: 0x22ff14

Unit 3 Pointers and Polymorphism

My Object's Address=0x22ff1c
My Object's Address=0x22ff18
My Object's Address=0x22ff14

/* Program to add two object contents using this pointer*/

#include <iostream>

using namespace std;

class Add
{

int val;
public:

void setdata(int val)
{

this->val=val;
}

void display()
{

cout<<val<<endl;
}
Add sum(Add v2)
{

val=val+v2.val;

return *this;
}

};
int main() {

Add v1,v2;

v1.setdata(3);

v2.setdata(4);

Add s;

s=v1.sum(v2);

cout<<"Sum is=";

s.display(); return

0;

}

Output:
Sum is=7

Unit 3 Pointers and Polymorphism

Pointer to Derived Classes and Base Class

It is possible to declare a pointer that points to the base class as well as the derived class.

One pointer can point to different classes. For example, X is a base class and Y is a derived class.

The pointer pointing to X can also point to Y.

/* Program to declare a pointer to the base class and access the member variable of base

calss.*/

class B
{

public :

int b;
void display()
{
cout<<"b = " <<b <<endl;
}

};
class D : public B

{
public :

int d;
void display()

{
cout<<"b= " <<b <<"\n" <<" d="<<d <<endl;

}
};

int main()
{

B *cp; B

base;

cp=&base;

cp->b=100;
// cp->d=200; Not Accessible
cout<<"\n cp points to the base object \n";

cp->display();
D d;
cout<<"\n cp points to the derived class \n";

cp=&d;
cp->b=150;
//cp->d=300; Not accessible

cp->display();
return 0;

}

Unit 3 Pointers and Polymorphism

Output:

cp points to the base object

b = 100
cp points to the derived class

b = 150

/* Program to declare a pointer to the derived class and access the member variable of base

and derived class.*/

#include <iostream>

using namespace std;

class B
{

public :

int b;
void display()
{

cout<<"b = "<<b <<endl;
}

};
class D : public B
{

public:
int d;
void display()
{

cout<<"b= "<<b <<endl;

cout<<"d= "<<d <<endl;
}

};
int main()
{

D *cp;

D d;

cp=&d;
cp->b=100;

cp->d=350;
cout<<"\n cp points to the derived object \n";

cp->display();
return 0; Output:

} cp points to the derived object
b= 100
d= 350

Unit 3 Pointers and Polymorphism

Polymorphism

The word poly means many, and morphism means several forms. Both the words are

derived from Greek language. Thus, by combining these two words, a new whole word called

polymorphism is created, which means various forms.

In C++, the function can be bound at either compile time or run time. Deciding a function

call at compile time is called compile time or early or static binding. Deciding a function call at

run time is called run time or late or dynamic binding. Dynamic binding permits to suspend the

decision of choosing a suitable member function until run time. Two types of polymorphism are

shown in Figure.

A polymorphism is a technique in which various forms of a single function can be defined

and shared by various objects to perform an operation.

Binding in C++

Binding refers to the process that is to be used for converting functions and variables into

machine language addresses. The C++ supports two types of binding: static or early binding and

dynamic or late binding.

Static (Early) Binding: By default, matching of function call with the correct function definition

happens at compile time. This is called static binding or early binding or compile-time binding.

Static binding is achieved using function overloading and operator overloading. Even though there

are two or more functions with same name, compiler uniquely identifies each function depending

on the parameters passed to those functions. Consider the following example.

Unit 3 Pointers and Polymorphism

#include <iostream>

using namespace std;

class Base
{

public:
void display()
{

cout<<"Base"<<endl;
}

};

class Derived:public Base
{

public:
void display()
{

cout<<"Derived"<<endl;

}
};

int main()
{

Derived d;
d.Base::display(); // Invokes base class function

d.display(); // Invokes derived class function

return 0;
}
Output:

Base

Derived

Explanation: In the above program both the classes contain display() member function. Both the

classes contain a similar function name. In function main() Hence, in order to invoke the

display() function of the base class, the scope access operator is used. When base and

derived classes have similar function names, in such a situation, it is very essential to provide

information to the compiler at compile time about the member functions.

Unit 3 Pointers and Polymorphism

Dynamic (Late) Binding: C++ provides facility to specify that the compiler should match

function calls with the correct definition at the run time; this is called dynamic binding or late

binding or run-time binding. Dynamic binding is achieved using virtual functions, base class

pointer points to derived class object and Inheritance.

Pointer to Base and Derived Class Objects:

In inheritance, the properties of existing classes are extended to the new classes. The new

classes that can be created from the existing base class are called as derived classes. The

inheritance provides the hierarchical organization of classes. It also provides the hierarchical

relationship between two objects and indicates the shared properties between them. All derived

classes inherit properties from the common base class. Pointers can be declared to the point base

or derived class. Pointers to objects of the base class are type compatible with pointers to objects

of the derived class. A base class pointer can point to objects of both the base and derived class. In

other words, a pointer to the object of the base class can point to the object of the derived class;

whereas a pointer to the object of the derived class cannot point to the object of the base class.

Fig. Type compatibility of base and derived class pointers

Virtual Functions:

A virtual function is a member function that is declared with in a base class and is

redefined by derived class.

To create a virtual function, precede the functions declaration in the base class with the

keworh ‘virtual’. It signals the compiler that we don’t want static linkage for this function. So,

Unit 3 Pointers and Polymorphism

when a class containing virtual function is inherited, the derived class redefines the virtual

function to fit its own needs. i.e., the definition creates a specific method.

Rules for Virtual Functions:

1. The virtual function should not be static and must be a member of a class.

2. The virtual function may be declared as a friend for another class. An object pointer can

access the virtual functions.

3. A constructor cannot be declared as virtual, but a destructor can be declared as virtual.

4. The virtual function should be defined in the public section of the class. It is also possible

to define the virtual function outside the class. In such a case, the declaration is done

inside the class, and the definition is outside the class. The virtual keyword is used in the

declaration and not in the function declaration.

5. It is also possible to return a value from virtual functions similar to other functions.

6. The prototype of the virtual function in the base class and derived class should be exactly

the same. In case of a mismatch, the compiler neglects the virtual function mechanism and

treats these functions as overloaded functions.

7. Arithmetic operations cannot be used with base class pointers.

8. If a base class contains a virtual function and if the same function is not redefined in the

derived classes, in such a case, the base class function is invoked.

Example:

class Base
{

public:
virtual void display()

{
cout<<"Base"<<endl;

}
};

class Derived:public Base
{

public:
void display()

Unit 3 Pointers and Polymorphism

{
cout<<"Derived"<<endl;

}
};
int main()
{

Derived b;

Base *a=&b;

a->display();

return 0;

}

Output:
Derived

/* C++ program to use pointer for both base and derived class and call the member

function. Use virtual keyword. */

#include <iostream>

using namespace std;

class super
{

public:
virtual void display()
{

cout<<"\n In function display() - class super";
}
virtual void show()
{

cout<<"\nIn function show() - class super";
}

}
;

class sub: public super
{

public:
void display()
{

cout<<"\nIn function display() class sub";
}
void show()
{

Unit 3 Pointers and Polymorphism

cout<<"\nIn function show() class sub";
}

};
int main()
{

super sup;

sub s;

super *sp;
cout<<"\n Super Pointer points to class super\n";

sp=⊃
sp->display();

sp->show();

cout<<"\n\n Super Pointer points to derived class sub\n";

sp=&s;

sp->display();

sp->show();

return 0;

}

Output:

Super Pointer points to class super
In function display() - class super
In function show() - class super

Super Pointer points to derived class sub
In function display() class sub
In function show() class sub

/*C++ program to create array of pointers. Invoke functions using array objects.*/

#include <iostream>
using namespace std;
class A
{

public:
virtual void show() { cout<<"A\n"; }

};
class B : public A
{

public:

Unit 3 Pointers and Polymorphism

void show() {cout<<"B\n";}
};
class C : public A
{

public:
void show() { cout<<"C\n"; }

};
class D : public A
{

public:
void show() { cout<<"D\n"; }

};
class E : public A
{

public:
void show() { cout<<"E"; }

};
int main()

{
A a;

B b;
C c;
D d;
E e;
A *pa[]={&a,&b,&c,&d,&e};

for (int j=0;j<5;j++)
pa[j]->show();

return 0;

}

Output:

A
B
C
D
E

Unit 3 Pointers and Polymorphism

Pure Virtual Functions

Pure virtual Functions are virtual functions with no definition. Declaration of pure virtual

function

virtual void display() =0; // pure function

In the above declaration of the function, the display() is a pure virtual function. The

assignment operator is not used to assign zero to this function. It is used just to instruct the

compiler that the function is a pure virtual function and that it will not have a definition.

A pure virtual function declared in the base class cannot be used for any operation. The class

containing the pure virtual function cannot be used to declare objects. Such classes are known as

abstract classes or pure abstract classes.

/* C++ program to declare pure virtual functions.*/

#include <iostream>

using namespace std;

class Base
{

public:
virtual void display()=0;

};

class Derived:public Base
{

public:
void display()

{
cout<<"Derived"<<endl;

}
};

int main()
{

Derived b;

Base *a=&b;

a->display();

return 0;
}
Output:

Derived

Unit 3 Pointers and Polymorphism

Explanation: In the above program, the display() function of the base class is declared a pure

function. The pointer object *a holds the address of the object of the derived class and invokes the

function display() of the derived class. Here, the function display() of the base class does nothing.

If we try to invoke the pure function using the statement b->Base::display(), the program is

terminated with the error “abnormal program termination.”

Abstract Classes

Abstract Class is a class which contains at least one Pure Virtual function in it. Abstract

classes are used to provide an Interface for its sub classes. Classes inheriting an Abstract Class

must provide definition to the pure virtual function, otherwise they will also become abstract class.

While defining such an abstract class, the following points should be kept in mind:

3. Do not declare an object of abstract class type.
4. An abstract class can be used as a base class.
5. The derived class should not have pure virtual functions. Objects of the derived class can

be declared.

Example:

class Base //Abstract base class
{

public:
virtual void show() = 0; //Pure Virtual Function

};

class Derived:public Base
{

public:
void show() {

cout << "Implementation of Virtual Function in Derived class";
}

};

int main()
{
//Base obj; //Compile Time Error

Base *b;
Derived d;

Unit 3 Pointers and Polymorphism

b = &d; b-

>show();
}

Virtual functions in derived classes:

In C++, once a member function is declared as a virtual function in a base class, it becomes

virtual in every class derived from that base class. In other words, it is not necessary to use the

keyword virtual in the derived class while declaring redefined versions of the virtual base class

function.

#include <iostream>
using namespace std;

class Base //Abstract base class
{

public:

virtual void show()
{

cout << "Implementation of Virtual Function in Derived class";
}

};

class Derived:public Base
{

};

int main()
{

Base *b;

Derived d;

b = &d; b-

>show();
}

Output:

Implementation of Virtual Function in Derived class

Unit 3 Pointers and Polymorphism

Run-Time Polymorphism Example:

#include <iostream>

using namespace std;

class CPolygon
{

protected:
int width, height;

public:
void get (int first, int second)
{

width= first;

height= second;
}
virtual int area()=0;

};
class CRectangle: public CPolygon
{

public:
int area()
{

return (width * height);
}

};

class CTriangle: public CPolygon
{

public:
int area()

{
return (width * height / 2);

}
};

int main ()
{

CRectangle rectangle;

CTriangle triangle;

CPolygon * ptr_polygon;

ptr_polygon = &rectangle;

ptr_polygon->get(2,2);
cout << ptr_polygon->area () << endl;

Unit 3 Pointers and Polymorphism

ptr_polygon = ▵

ptr_polygon->get(2,2);
cout << ptr_polygon->area () << endl;

return 0;
}

Output:
4
2

Object Slicing: Virtual functions can be invoked using a pointer or reference. If we do so, object

slicing takes place. The following program takes you to the real thing:

class Base
{

public:
virtual void display()=0;

};

class Derived:public Base
{

public:
void display()

{
cout<<"Derived"<<endl;

}
};

int main()
{

Derived b;
b. display();//object reference

Base *a=&b;
a->display(); //pointer

return 0;

}

Output:

Derived
Derived

